Sep 10 2019
Parkinson's disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra and striatum of brains. α-synuclein is the causative protein of Parkinson's disease. Ubiquitinated α-synuclein aggregates in nerve cells play a central role in the development of disease. A research team at Niigata University has discovered that G3BP1 protein inhibits ubiquitination and aggregation of α-synuclein. This study suggested that the G3BP1 plays a protective role in the development of Parkinson's disease by reducing α-synuclein ubiquitination and aggregation. Therefore, G3BP1 is a promising drug target for the treatment of Parkinson's disease.
Title:?G3BP1 inhibits ubiquitinated protein aggregations induced by p62 and USP10
Journal:?Scientific Reports
Authors:?Sergei Anisimov, Masahiko Takahashi, Taichi Kakihana,Yoshinori Katsuragi, Hiroki Kitaura, Lu Zhang, Akiyoshi Kakita, Masahiro Fujii

Development of New Candidate Agent for Lethal and Severe Cutaneous Drug Reaction

New Discovery Enabling River Turbulence Control: Paving the Way for Flood-Resilient Channel and Urban Drainage Facility Design

Tiny fish open new horizons for autism research.