Sep 10 2019
Parkinson's disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra and striatum of brains. α-synuclein is the causative protein of Parkinson's disease. Ubiquitinated α-synuclein aggregates in nerve cells play a central role in the development of disease. A research team at Niigata University has discovered that G3BP1 protein inhibits ubiquitination and aggregation of α-synuclein. This study suggested that the G3BP1 plays a protective role in the development of Parkinson's disease by reducing α-synuclein ubiquitination and aggregation. Therefore, G3BP1 is a promising drug target for the treatment of Parkinson's disease.
Title:?G3BP1 inhibits ubiquitinated protein aggregations induced by p62 and USP10
Journal:?Scientific Reports
Authors:?Sergei Anisimov, Masahiko Takahashi, Taichi Kakihana,Yoshinori Katsuragi, Hiroki Kitaura, Lu Zhang, Akiyoshi Kakita, Masahiro Fujii
Low Intake of Fruits and Vegetables Is Associated with Higher 10-Year Mortality Risk in Patients with Chronic Kidney Disease on Hemodialysis
New Drug Candidate for Spinocerebellar Ataxia ~Clinical Trial Results of L-Arginine for Spinocerebellar Ataxia Type 6~
CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice